Structure and evolution of the lipase superfamily.
نویسندگان
چکیده
The lipase superfamily includes three vertebrate and three invertebrate (dipteran) proteins that show significant amino acid sequence similarity to one another. The vertebrate proteins are lipoprotein lipase (LPL), hepatic lipase (HL), and pancreatic lipase (PL). The dipteran proteins are Drosophila yolk proteins 1, 2, and 3. We review the relationships among these proteins that have been established according to gene structural relatedness and introduce our findings on the phylogenetic relationships, distance relationships, and evolutionary history of the lipase gene superfamily. Drosophila yolk proteins contain a 104 amino acid residue segment that is conserved with respect to the lipases. We have used the yolk proteins as an outgroup to root a phylogeny of the lipase family. Our phylogenetic reconstruction suggests that ancestral PL diverged earlier than HL and LPL, which share a more recent root. Human and bovine LPL are shown to be more closely related to murine LPL than to guinea pig LPL. A comparison of the distance (a measure of the number of substitutions between sequences) between mammalian and avian LPL reveals that guinea pig LPL has the largest distance from the other mammals. Human, rodent, and rabbit HL show marked divergence from one another, although they have similar relative rates of amino acid substitution when compared to human LPL as an outgroup. Human and porcine PL are not as divergent as human and rat HL, suggesting that PL is more conserved than HL. However, canine PL demonstrates an unusually rapid rate of substitution with respect to the other pancreatic lipases. The lipases share several structurally conserved features. One highly conserved sequence (Gly-Xaa-Ser-Xaa-Gly) contains the active site serine. This feature, which agrees with that found in serine esterases and proteases, is found within the entire spectrum of lipases, including the evolutionarily unrelated prokaryotic lipases. We review the location and possible activity of putative lipid binding domains. We have constructed a conservation index (CI) to display conserved structural features within the lipase gene family, a CI of 1.0 signifying perfect conservation. We have found a correlation between a high CI and the position of conserved functional structures. The putative lipid-binding domains of LPL and HL, the disulfide-bridging cysteine residues, catalytic residues, and N-linked glycosylation sites of LPL, HL, and PL all lie within regions having a CI of 0.8 or higher. A number of amino acid substitutions have been identified in familial hyperchylomicronemia which result in loss of LPL function.(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
Gene Family: Structure, Organization and Evolution
Gene families are considered as groups of homologous genes which they share very similar sequences and they may have identical functions. Members of gene families may be found in tandem repeats or interspersed through the genome. These sequences are copies of the ancestral genes which have underwent changes. The multiple copies of each gene in a family were constructed based on gene duplicati...
متن کاملKinetics and Isotherm Studies of the Immobilized Lipase on Chitosan Support
The kinetics and isotherm studies of the immobilized lipase and the mechanism of immobilization on chitosan beads and activated chitosan beads with glutaraldehyde were investigated. The effect of glutaraldehyde on porosity of chitosan was evaluated by FESEM analysis. It was observed that the porosity of the carrier which has activated by glutaraldehyde was substantially increased. The validity ...
متن کاملGlutathione S- transferases and their function as a protein superfamily in plants
Glutathione s transferase (GST) is one of the largest protein and multigene families present in all plant species and other living organisms. For these proteins, which are highly inducible to stress and internal and external stimuli, several functions in plants have been identified, including implication in secondary metabolism, growth and development, detoxification of herbicides, coping with...
متن کاملTexture Evolution in Low Carbon Steel Fabricated by Multi-directional Forging of the Martensite Starting Structuree
It has been clarified that deformation and annealing of martensite starting structure can produce ultrafine-grained structure in low carbon steel. This study aims to investigate the texture evolution and mechanical properties of samples with martensite structure deformed by two different forging processes. The martensitic steel samples were forged by plane strain compression and multi-directio...
متن کاملRole of the NC-Loop in Catalytic Activity and Stability in Lipase from Fervidobacterium changbaicum
Flexible NC-loops between the catalytic domain and the cap domain of the α/β hydrolase fold enzymes show remarkable diversity in length, sequence, and configuration. Recent investigations have suggested that the NC-loop might be involved in catalysis and substrate recognition in many enzymes from the α/β hydrolase fold superfamily. To foster a deep understanding of its role in catalysis, stabil...
متن کاملThe study of the situation of administrative system evolution with emphasizing on its root factors on hospitals affiliated to Mazandaran Medicine Science University
Background and purpose: the administrative system of each country is important because of its direct relationship with different groups of people. The purpose of this paper is studying the status of the administrative system evolution in Mazandaran university of medical science with emphasizing on root factors. Materials and methods: In this research, three aspects, organizational structure, jo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 33 2 شماره
صفحات -
تاریخ انتشار 1992